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ABSTRACT 
A simple soil reflectance parameterization was empirically calibrated and integrated into the SAILH+PROSPECT 
canopy reflectance model to assess simultaneously LAI and canopy chlorophyll content from hyperspectral 
reflectance data. Model inversion was performed using an artificial neural net (ANN) trained on synthetic 
reflectance spectra that were generated by the extended canopy reflectance model. For validation, a completely 
independent data set  was used consisting of field reflectance measurements and corresponding LAI and chlorophyll 
data. Results obtained on the validation data set were very promizing. The coefficient of determination (R2) varied 
between 0.86 and 0.87 (LAI and canopy chlorophyll content, respectively) and the root mean squared error (RMSE) 
between 0.83 (LAI; m2 m-2) and 0.66 (canopy chlorophyll content; g m-2). The trained ANN was also applied to an 
airborne HyMAP image to demonstrate the applicability of the inversion approach to remote sensing data. The 
retrieved canopy chlorophyll contents and soil brightness values showed a reasonable correlation to on-site final 
yield measurements acquired two months after the image data acquisition.  

Keywords:  winter wheat, reflectance model, SAILH, PROSPECT, soil reflectance parameterization, leaf area 
index, canopy chlorophyll content, artificial neural net, HyMAP, hyperspectral reflectance 

1 INTRODUCTION 
The retrieval of bio -physical canopy variables by means of remote sensing is an important prerequesite for site-
specific agriculture [1], [2]. This importance stems from the fact, that variables such as  leaf area index (LAI) or 
chlorophyll content indicate the actual status of the crop and also its (potential) productivity. Crop growth can be 
derived, for example, from LAI through mechanistic growth models  [3], [4], [5]. 

Bio-physical variables can either be mapped by means of empirical-statistical methods [6], [7], or by means of 
physically based approaches (i.e. the inversion of radiative transfer models) [8], [4]. Generally, the radiative 
transfer based approach is preferred, since it allows more physical insight into the system behavior [9], [10], [11].  
Moreover, radiative transfer models can in principle be more easily transferred to different measurement conditions 
and crop types and are particularly well suited for hyperspectral and multi-directional data sets . Empirical-statistical 
methods have the advantages  that they are simple and easy to use. They may also serve as benchmark models  
against which radiative transfer models can be compared [12]. 

For the moment, research on the use of radiative transfer models focuses mainly on two problems  [13]: 

(i) difficulties due to the fact that generally an analytical solution of the inverse problem does not exist. 
This makes the inversion very time consuming, if one employs numerical optimization techniques; 

(ii) difficulties due to the generally ill-posed nature of the inversion process, which leads to unstable 
inversion results because some model parameters (for example LAI and average leaf inclination angle) 
counterbalance each other. 

For the first problem it was proposed to use either artificial neural nets (ANNs) [14], [15], [16], [12], or look-
up-tables (LUT) [17], [18]. This means that the radiative transfer model is only used in the direct mode to build a 
(large) synthetic data set. This data set is then used to train the ANN or to build the LUT. Concerning the ill-posed 
nature of the inversion problem, one has either the possibility to use a priori information [18], or to derive 
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additional information from the remote sensing data itself, for example from the spectral properties of the 
surrounding pixels [19]. 

Especially for low coverages (i.e. LAI ≤ 2) and in spectral regions where leaf and canopy transmittances are 
high (nIR), one has also to deal with the influence of the underlying soil, which – under these conditions – has  a 
strong influence on canopy reflectance (Fig. 1). To deal with this effect, an effort was undertaken to empirically 
calibrate a soil reflectance parameterization, and to integrate this soil parameterization into SAILH+PROSPECT 
canopy reflectance model [20], [21], [9]. With this coupled canopy reflectance model, the assessment of LAI and 
canopy chlorophyll content from hyperspectral reflectance data was investigated. 

 

Figure 1.  Simulated sensitivity of canopy reflectance to soil brightness as a function of wavelength and canopy coverage (LAI) 
(top). Sensitivity is expressed by the percentage of variance in the canopy reflectance explained by the soil reflectance (R2) for 
the given wavelength and LAI considered. To ease interpretation, a typical vegetation spectrum is also shown (bottom). For the 
simulation, the extended SAILH+PROSPECT canopy reflectance model was randomly parameterized (parameters shown in 
Tab. 2). Coefficients of determination (R2) were calculated between canopy and corresponding soil reflectances. 

 

2 MATERIAL 
Four times in the 2000 growing season (Day of Year 119, 130, 162 and 180), four commercial winter wheat fields 
in the Trier area (“Bitburger Gutland”) were probed (Fig. 2) (for more details see also [6], [7]). Spectroradiometric 
(Sect 2.1.1) and corresponding leaf area index measurements (LAI) (Sect. 2.2.1) were performed on three randomly 
chosen sub-plots (0.25 m2) within each field. From these three measurements, the average LAI values and 
reflectance spectra were calculated. Average leaf chlorophyll content was assessed from 30 randomly chosen plants 
collected inside the fields (Sect. 2.2.2). On two occassions, either LAI or chlorophyll measurements were missing; 
thus, in total, we acquired 14 corresponding spectral and biological measurements that served to validate the canopy 
reflectance model inversion. Airborne HyMAP data and corresponding final yield measurements (Sect. 2.3) were 
only used for indirect validation and to demonstrate the general applicability of the approach (HyMAP test site 
“Feller Hof”) to hyperspectral remote sensing data. 
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Figure 2.  The location of the study region Trier within Germany (right). The validation test site (“Bitburger Gutland”) is 
situated NW and the HyMAP demonstration site (“Feller Hof”) SE of Trier, respectively. 

2.1. Collection of field spectral data 
The top of canopy reflectance (1 nm spectral resolution) was measured with an ASD Field Spec Pro 
spectroradiometer from an height of about 1.5 m during favorable weather conditions around solar noon 
(integration time: 10 s). ASD readings were normalized to bi-directional reflectances by means of a spectralon 
reference panel of known reflectivity. For each sub-plot, 5 reflectance readings were taken and averaged. A moving 
Savitzky-Golay filter (± 5 nm) [22] was applied to reduce sensor noise. Field spectra were resampled to the central 
wavebands of the HyMAP sensor. The three sub-plot spectra per field were finally averaged to yield the average 
field reflectance. 

2.2. Biological measurements used for model validation 

2 .2 .1 Leaf Area Index (LAI)  

On exactly the same positions within the wheat plots where the canopy reflectance was measured, the above-ground 
plant material was harvested within the 25 x 25 cm sub-plots and brought to the laboratory. There – using a 
commercial planimeter –one-sided plant surface of the fresh material was determined and used to calculate the leaf 
area index (LAI; m2 m-2). 

2 .2 .2  Canopy chlorophyll content (CAB) 

Leaf chlorophyll content was determined using the SPAD-502 instrument [Spectrum Technologies, Inc.]. For each 
wheat field and measurement date, 30 plants (upper leaves) were randomly selected and probed. SPAD readings 
were converted into leaf chlorophyll content (Cab; in µg cm-2) by means of an empircal calibration function [23]. 
From the 30 individual leaf chlorophyll measurements, the average was calculated and multiplied by the 
corresponding LAI (Sect. 2.2.1) to obtain the total canopy chlorophyll content (CAB; in mg m-2). 

2.3. Data used for demonstration purposes 
To demo nstrate the general applicability of the inversion procedure, a HyMAP image was used. The image was 
acquired in 1999 from an airborne platform and covers the test-site “Feller Hof” (Fig. 2). At the “Feller Hof” test 
site final yield was measured on 15-08-1999. The HyMAP sensor was flown by DLR on 27-06-1999 and the image 
was processed at our institute to yield spectral bi-directional reflectances [24]. Processing included parametric 
geocoding (PARGE software) and atmospheric correction. Since one HyMAP channel was eliminated due to sensor 
misfunction, the final image had 127 spectral channels and a ground resolution of 5 m. 

The intra-field distribution of the final yield (YIELD; in t ha-1) was measured destructively at the end of the 
1999 growing season 15-08-1999. Point measurements covering the entire field were made every 5 m within the 
field (nobs=106). A differential GPS was used to precisely locate the sampling sites. Measured data points were 
linearly interpolated to space to be directly comparable to the corresponding HyMAP image. 
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3 METHODS 
As shown in (Fig. 1), soil reflectance has a strong influence on canopy reflectance, especially for low coverages. To 
deal with this effect, a simple soil reflectance parameterization was empirically calibrated, and integrated into 
SAILH+PROSPECT canopy reflectance model [20], [21], [9]. With this coupled canopy reflectance model, the 
assessment of LAI and canopy chlorophyll content from hyperspectral reflectance data was investigated. Model 
inversion was performed using an artificial neural net (ANN) trained on synthetic reflectance spectra generated by 
the canopy reflectance model (Sect. 3). For validation, an completely inpedendent data set was used, consisting of 
field reflectance data and corresponding LAI and chlorophyll measurements (Sect. 2). For demonstration purposes, 
an hyperspectral HyMAP image was also used. The HyMAP derived estimates were empirically related to the final 
yield of the investigated wheat field. 

3.1 Soil parameterization 
In an attempt to invert canopy reflectance spectra, it is important to parameterize soil reflectance as realistic as 
possible, while using only a few parameters. For this purpose, a simple soil parameterization (SOILEMP) was 
developed. The parameterization considers two main aspects  of spectral variability of soils in the study region: (1) 
changes in the overall brightness, and (2) changes in the shape of the reflectance curve. The overall brigthness is 
mainly influenced by changes in soil moisture content, surface roughness and soil organic matter content. The 
(minor) changes in the reflectance shape can be related to variations in the inorganic carbon content. 

To empirically calibrate the model, a regional soil data base was used [see also [25], [26]). The data base covers 
soils from the entire study area and consists of soil spectra and corresponding chemical measurements. From this 
data base (nobs=140), first the average soil reflectance (ρ*soil(λ)) was calculated. This average reflectance spectrum 
was then (iteratively) fitted into each measured soil spectra using an (multiplicative) brightness factor (SCALE). In 
the final step, the  remaining reflectance residues (Rsd) were linearly regressed against the inorganic carbon content 
(Cinorg) for each waveband: 

( ) ( ) ( ) inorgCSIRsd ×+= λλλ  (1) 

By doing so, we obtained a simple empircal soil parameterization, which scales and shapes the average soil 
reflectance spectra according to the overall brightness (SCALE])and the inorganic carbon content (Cinorg): 

( ) ( ) ( )λλλ ρρ RsdSCALEsoilsoil +×= *  (2) 

with I(λ),  S(λ) and ρ*soil(λ)) being spectral constants  (not shown), and SCALE and Cinorg  being two wavelength 
independent parameters. 

To evaluate the soil parameterization, it was numerically adjusted to the measured soil spectra (Fig. 3). The 
overall coefficient of determination (R2) between measured soil reflectances and fitted values was [0.998] with an 
RMSE of only [0.001] (nobs=17.780) (Fig. 3 right). Only a few soil samples had spectral properties, that were 
modeled with R2 lower than 0.995 (Fig. 3 center). Most wavelengths were modeled with R2 > 0.98 (Fig. 3 left). The 
slightly lower accuracy for the visible wavelenghts is due to the fact, that the actual parameterization oversimplifies 
reality. For example, it is well known that iron oxide content modifies soil reflectance at shorter wavelengths – a 
fact currently not included. 

 

Figure 3.  Results of the empirical calibration of the soil reflectance parameterization (Eq. 1 and 2). Measured and adjusted soil 
reflectance of all soil samples and all wavelengths together (left). R2 between measured and adjusted soil reflectance for each 
single soil sample calculated over all HyMAP wavelengths (center). Spectral variation of the coefficient of determination (R2) 
between measured and adjusted soil reflectances for all 140 soil samples investigated (right). 
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3.2 Direct and inverse canopy reflectance modeling  

3 .2 .1  Artificial neural networking  

Artificial neural nets (ANN) are able to approximate even very complex (non-linear) relationships [12]. Once 
trained, ANNs are very fast, even when inverting large data sets . Moreover, they are also able to map several (bio-
physical) variables simultaneously and have very low computer storage requirements. Inversion of radiative transfer 
model using ANNs was shown to be successful on both the leaf and the canopy level [12], [14], [27]. We thus 
decided to perform canopy reflectance model inversion using an ANN trained on synthetic reflectance spectra 
generated by the extended SAILH+PROSPECT canopy reflectance model (parameter distributions are shown in 
Tab. 2). The ANN architecture was set up in a way that 5 parameters of the canopy reflectance model were  
estimated simultaneously: LAI, canopy chlorophyll content, leaf water content, leaf dry matter content and soil 
brightness factor. Analysis, however, concentrated on the retrieved LAI and canopy chlorophyll contents. 

To avoid network overfitting, the synthetic data set generated by the extended SAILH+PROSPECT model 
(Sect. 3.2.2) were divided into training data and data used for “early stopping” (i.e. test data). The first subset (2/3 
of samples) is used for computing the gradient and updating the network weights and biases. The error on the test 
data set (1/3 of samples) is monitored during the training process. When the test data error increases for a specified 
number of iterations, the training is stopped, and the weights and biases at the minimum of the test data error are 
returned. 

Table 1.  Main characteristics of the artificial neural net (ANN) employed for canopy reflectance model inversion. Synthetic 
training spectra were generated by the extended SAILH+PROSPECT canopy reflectance model (see Tab. 2). The ANN was 
programmed using MATLAB’s Neural Network Toolbox [28]. For further details refer to the text. 

ANN architecture  ANN training 

 Network type   Training patterns 

  Fully interconnected feedforward net-
work 

 Number of layers (and corresponding neu-
rons) 

   Synthetic canopy spectra generated by 
the extended SAILH+PROSPECT re -
flectance model and compressed into 6 
principal components (nobs=3.000) and 
correspondig model parameters 

Backpropagation training algorithm 

 Levenberg-Marquardt algorithm 

 3 layers: input layer (6 neurons), 
hidden layer (2 neurons) and output 
layer (5 neurons; only LAI and canopy 
chlorophyll content were used for sub-
sequent analysis) 

Network performance function 

Tranfer functions of neurons in hidden and 
output layers 

 Average squared error between net-
work outputs and targets  

Network generalization 

 

 tan-sigmoid (hidden neurons) and 
linear (output neurons) 

  

 Automatic stop of network training 
when error on independent test data set 
increases (“early stopping”) 

     Number of training iterations 

     50 or less (i.e., when “early stopping” 
criterion applies) 

 

3 .2 .2  Generation of training patterns  

For ANN training, the extended SAILH+PROSPECT canopy reflectance model was used in the direct mode to 
simulate 5.000 canopy reflectance spectra in the spectral resolution of the HyMAP sensor. Input parameter 
combinations were randomly generated. Their statistical distributions were chosen according to the literature, and to 
represent more or less erectophile wheat canopies (Tab. 2). Only those synthetic reflectance spectra were used 
further, that fall into the range defined by the reflectance measurements (field and HyMAP spectra) (nobs=3.000) 
(see Sect. 2). From these synthetic canopy reflectance spectra, the 10 “optimum” wavelengths proposed by [29] 
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were selected. Three additional wavelengths in the visible part of the spectrum were added (corresponding to the 
Landsat-TM channels 1 to 3) to cover also those wavebands sensitive to the chlorophyll absorption feature not 
considered by these authors. The synthetic reflectance data set (13 wavelengths and 3.000 reflectance spectra) was 
then compressed into the first 6 principle components, covering more than 99.6 % of the total spectral variance. 
Only these principle components were further used during network training and model inversion. 

Table 2.  Random parameter sets applied for reflectance modeling of erectophile winter wheat canopies using 
SAILH+PROSPECT canopy reflectance model, extended by the empirically calibrated soil reflectance parameterization (nadir 
view; θz=45°; nobs=5.000). The parameter sets were randomly generated according to the indicated distributions and ranges. (1)In 
cases where distribution is normal, range indicates mean ± std. (2)Cm is drawn such that relative water content is 0.8 ± 0.02. 

model parameter abbreviation units distribution range(1) 

     

canopy parameter (SAILH)     

 Leaf Area Index LAI m2 m-2 uniform 0-10 

 Average Leaf Angle ALA ° (degree) normal 70 ± 3 
 Hot spot parameter hot no dimension normal 0.1 ± 0.02 
leaf parameter (PROSPECT)     

 Leaf chlorophyll content Cab g cm-2 uniform 10-80 

 Leaf water content Cw cm uniform 0.004-0.044 

 Leaf dry matter content(2) Cm g cm-2 normal 0.0008-0.016 

 Leaf structure parameter N no dimension normal 2 ± 0.34 
soil parameter (SOILEMP)     

 Soil brightness SCALE no dimension normal 1 ± 0.14 
 Inorganic carbon content Cinorg  g cm-3 uniform 0-6 

 

4 RESULTS 

4.1 SAILH+PROSPECT invers ion using field reflectance data 
The SAILH+PROSPECT canopy reflectance model allowed a successful retrieval of the two investigated bio-

physical canopy attributes from fie ld reflectance data: LAI and canopy chlorophyll content (Fig. 4). Comparing 
estimates to ground truth data revealed, that 86 % (LAI), respectively, 87 % (CAB) of the total variance was 
explained. All points fall close to the 1 : 1 line. No saturation effects are visible. The root mean squared error 
(RMSE) varied between 0.83 (LAI; m2 m-2) and 0.66 (canopy chlorophyll content; g m-2). An analysis of the 
residues showed no autocorrelation in the errors (not shown). 

The results strongly suggest that the regional calibration of the soil reflectance parameterization and the ANN 
based inversion strategy, are well suited for the retrieval of bio-physical canopy variables from hyperspectral 
reflectance data.. 
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Figure 4.  Measured versus retrieved bio-physical canopy variables using hyperspectral field reflectance data and 
SAILH+PROSPECT canopy reflectance model: LAI (left); canopy chlorophyll content (right). The estimates were obtained 
using an ANN trained on synthetic canopy reflectance spectra, generated by the extended SAILH+PROSPECT reflectance 
model. The reference measurements are from a completely independent validation data set (“Bitburger Gutland”). Training and 
validation was repeated ten times with randomly initialized network weights. The reported coefficients of determination (R2) are 
the resulting mean values ± the corresponding standard deviations. 

4.2 SAILH+PROSPECT invers ion using HyMAP data 
In order to demonstrate the applicability of the inversion approach to airborne data, hyperspectral HyMAP data 
were inverted to retrieve the bio-physical canopy variables with the same ANN based inversion approach that had 
previously been used on the field spectra (Sect. 4.1). However, since contemporary reference measurements of LAI 
and CAB were missing, no direct validation of the retrieved bio-physical variables was possible. Instead, a multi-
variate linear regression between the ground measured final yield (YIELD) (dependent variable) and HyMAP 
derived soil brightness factor (SCALE) and canopy chlorophyll content (CAB) was established. For this regression, 
75 % of the reference data were used. The regression revealed a negativ regression coefficient for SCALE and a 
positiv coefficient for CAB (not shown). This means, final yield in the investigated field was higher in areas with 
dark soils (e.g., fertile soils) and where LAI and leaf chlorophyll content were high (e.g. high photosynthetic 
capacity). This indirectly confirms the applicability of the approach to hyperspectral airborne data. The remaining 
reference data not used for calibration (i.e., 25 % of the total data set) were correlated with the corresponding 
estimates (r2=0.4) (Fig. 5). 

Application of the established multi-variate regression to the HyMAP derived SCALE and CAB values is 
shown in (Fig. 6 left). The estimated intra-field distribution of the final yield shows more or less the same overall 
structure than the ground measured yield (Fig. 6 right). However, there are also some strong discrepancies. For 
example, in the lower right corner of the wheat field, low yield values were measured in the field, because weeds 
infested this area. Since the sensor (and the retrieval algorithm) do not distinguish between the signal coming from 
the wheat plants and the signal from the weeds, model inversion (falsly) suggests an area of high final yield. 

.  

Figure 5.  Measured versus estimated final yield (t ha-1) obtained from a multi-variate regression equation involving HyMAP 
derived soil brightness factor (SCALE) and canopy chlorophyll content (CAB). The estimates are from an independent data set 
not used for calibration (¼ of the total data set). Notice the time lag of almost two months between image acquisition 27-06-
1999 and ground truth measurements 15-08-1999. 
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Figure 6.  HyMAP derived final yield (left) and correpsonding ground measurements (right) (final yield in t ha-1). For the 
estimates, 75 % of the reference measurements were used to establish a multi-variate regression equation between final yield and 
HyMAP derived soil brightness factor (SCALE) and canopy chlorophyll content (CAB). This multi-variate regression equation 
was then applied to the HyMAP derived bio-physical canopy attributes. Notice the time lag of almost two months between 
image acquisition 27-06-1999 and ground truth measurements 15-08-1999. 

CONCLUSIONS 
It was demonstrated that the extended SAILH+PROSPECT canopy reflectance model (i.e. coupled with a calibrated 
soil reflectance parameterization) can be successfully inverted using hyperspectral reflectance data (field and 
airborne spectra). The ANN based inversion procedure not only proofed exact, but also allowed a very fast 
inversion of large hyperspectral data cubes. 

Direct validation of the field spectra dervied bio-physical attributes on completely independent reference 
measurements gave an R2 of 0.86 (LAI), respectively, 0.87 (canopy chlorophyll content), with all estimates close to 
the 1 : 1 line. The root mean squared error (RMSE) varied between 0.83 (LAI; m2 m-2) and 0.66 (canopy 
chlorophyll content; g m-2). 

The HyMAP derived bio-physical attributes (soil brightness and canopy chlorophyll content) were successfully 
related to final yield measurements, acquired almost two month after the image data acquisition. This indirectly 
confirms the inversion approach 
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