Die Arda-Täler auf den Mars: Ein sehr altes Entwässerungssystem
Die aktuellen Bilder, aufgenommen von der hochauflösenden Stereokamera HRSC an Bord der ESA-Raumsonde Mars Express zeigen Aufnahmen vom westlichen Abschnitt der Arda Valles. Ein großes, von Flussläufen durchzogenes Gebiet auf dem Mars. Mitarbeiter der Fachrichtung Planetologie und Fernerkundung der Freien Universität Berlin erstellten die hier gezeigten Bildprodukte. Die systematische Prozessierung der Daten erfolgt am DLR-Institut für Planetenforschung in Berlin-Adlershof.
Arda Valles Perspektive
• Fullscreen, Pan and Zoom • Download high resolution
Betrachtet man die großräumige Topographie entlang des Marsäquators fallen vor allem mehrere extrem breite Abflusskanäle auf, die ohne viele seitliche Zuflüsse nach Norden führen. Weniger auffällig sind die auf diesen Bildern zu sehenden kleineren Talsysteme. Sie sind vielfach verzweigt und schlängeln sich mit vielen Windungen durch das Gelände. Solche Talsysteme kennen wir typischerweise von der Erde. Die Arda Valles im Marshochland sind ein sehr anschauliches Beispiel für ein derartiges Entwässerungssystem.
Die Arda-Täler, benannt nach einem Fluss im antiken Thrakien, der heute nördlich der Grenze zwischen Bulgarien und Nordostgriechenland in die Mariza mündet, befinden sich auf dem Mars etwa 260 Kilometer nördlich des Kraters Holden. Der Krater Holden wurde von Süden über einen Zulauf von Wasser durchströmt und entwässerte über die Ladon Valles nach Norden, in Richtung eines namenlosen großen, schon sehr stark verwitterten Einschlagbeckens. Auch das Wasser, das durch die Arda-Täler floss, strömte durch den südöstlichen Beckenrand in dieses große, von Sedimenten verfüllte Basin (siehe Übersichtskarte).
Arda Valles Farbaufsicht
• Fullscreen, Pan and Zoom • Download high resolution
Ein eng verzweigtes Entwässerungsnetz aus breiten Tälern
In der linken (südlichen) Bildhälfte der Bilder 2, 3 und 4 wird offensichtlich, dass auf einer Länge von etwa 175 Kilometern ein etwa 50 bis 80 Kilometer breites Gebiet von Flussläufen durchzogen war. Vor mehr als drei Milliarden Jahren floss Wasser durch dieses Netzwerk, die Region wurde in Richtung der Niederung des alten Einschlagsbeckens entwässert. In der Hydrogeologie wird ein solches Muster von Flussläufen nach dem griechischen Wort für Baum, déndron, als „dendritisch“ bezeichnet. Die Haupttäler haben eine Breite von bis zu zwei Kilometern, was für Täler in einem dendritischen Netzwerk auf dem Mars ungewöhnlich breit ist. Möglicherweise flossen früher auf diesem relativ eng begrenzten Gebiet große Mengen an Wasser, was aber anhand der Bilder nicht zweifelsfrei belegbar ist. Ein Beispiel für ein feiner verästeltes, dendritisches Netzwerk hat Mars Express am Rand des weiter östlich gelegenen Kraters Huygens fotografiert.
Oberhalb der Bildmitte fällt ein massiver Bergrücken auf. Er ist etwa 20 Kilometer breit und etwas mehr als zweitausend Meter hoch. Möglicherweise handelt es sich um die Reste eines Kraterrandes einer sehr alten Einschlagsstruktur. Unterhalb des östlichen Abhangs dieses Bergrückens befindet sich ein kleiner, etwa 8,5 Kilometer breiter Krater mit einer auffallend glatten Ebene in seinem Inneren. Der Krater wurde von Sedimenten angefüllt, die vom Bergrücken stammen. Das lässt sich an der fächerartigen Form der Ablagerungen ablesen.
Rechts der Bildmitte ist ein Krater von 25 Kilometern Durchmesser zu sehen, dessen Vertiefung ebenfalls von Sedimenten angefüllt wurde. Die ursprünglich glatte Oberfläche hat jedoch infolge von Setzungsbewegungen tiefe Risse bekommen, so dass sich dadurch ein so genanntes „chaotisches Gebiet“ gebildet hat. Eine ganz ähnliche Struktur wurde nur wenige Kilometer weiter östlich in dieser Region von der HRSC im Jahr 2012 in den Kratern Sigli und Chambe entdeckt. Auf den hier vorgestellten Bildern fällt auf, dass die Abhänge in das Kraterinnere ungewöhnlich viele „Knubbel“ aufweisen, anstelle der an Kratern dieser Größe meistens auftretenden, eher terrassenartigen und bogenförmigen Geländemerkmale. Diese Strukturen deuten möglicherweise das ursprüngliche Höhenniveau der Sedimentschichten im Kraterinneren an.
Arda Valles Farbkodiertes Höhenmodell
• Fullscreen, Pan and Zoom • Download high resolution
Tonminerale in den Arda Valles ein Hinweis auf Wasser in der Frühzeit des Mars
Zwischen diesem Krater und den Unterläufen der dendritischen Täler sind bei genauer Betrachtung einige Stellen mit geschichteten, deutlich helleren Ablagerungen sichtbar. Untersuchungen mit Spektrometern deuten darauf hin, dass es sich dabei um Tonminerale handelt. Tonminerale treten auf dem Mars an zahlreichen Stellen auf, sie sind ein typisches Verwitterungsprodukt von dunklem, eisen- und magnesiumsreichen vulkanischen Gestein, das von Wasser umspült wird. Auch dies deutet darauf hin, dass das Wasser vor sehr langer Zeit, vermutlich vor mehr als dreieinhalb Milliarden Jahren, durch das dendritische Tälernetzwerk geflossen ist: Auf dem Mars identifizierte Tonminerale finden sich nahezu ausschließlich in Landschaften aus der Frühzeit des Mars. Die wasserhaltigen Tonminerale stehen im Kontrast zu Salzablagerungen an anderen Orten, die ein jüngeres Alter haben.
Das Gebiet im Norden der Aufnahmen (rechts in den Bildern 2, 3 und 4) ist von der Ebene des etwa 350 Kilometer großen, namenlosen Kraters beherrscht. Dies Fläche wird auch von Sedimenten gebildet, die zum einen von den dendritischen Tälern im Kraterrand ins Innere des Beckens transportiert wurden, zum anderen von größeren Zuflüssen aus dem Süden wie den Ladon Valles. Die markanten linearen Strukturen deuten darauf hin, dass die Oberfläche durch Setzungsbewegungen unter Spannung geriet und es zu tektonischen Brüchen kam, deren struktureller Verlauf leicht nachvollziehbar ist. Die Ursache für die Setzungsbewegungen könnte in der Verdunstung des Wassers und der Bodenfeuchte zu suchen sein, so dass es zur Bildung von Hohlräumen kam, die in sich zusammensackten, das Volumen reduzierten und dadurch tektonische Brüche auslösten.
Arda Valles Anaglyphe
• Fullscreen, Pan and Zoom • Download high resolution
Bildverarbeitung und das HRSC-Experiment auf Mars Express
Die Aufnahmen mit der HRSC (High Resolution Stereo Camera) entstanden am 20. Juli 2015 während Orbit 14.649 von Mars Express. Die Bildauflösung beträgt etwa 14 Meter pro Bildpunkt (Pixel). Die Bildmitte liegt bei etwa 19 Grad südlicher Länge und 327 Grad östlicher Breite. Die Farbaufsicht (Bild 2) wurde aus dem senkrecht auf die Marsoberfläche gerichteten Nadirkanal und den Farbkanälen der HRSC erstellt; die perspektivische Schrägansicht (Bild 1) wurde aus den Stereokanälen der HRSC berechnet. Das Anaglyphenbild (Bild 4), das bei Betrachtung mit einer Rot-Blau- oder Rot-Grün-Brille einen dreidimensionalen Eindruck der Landschaft vermittelt, wurde aus dem Nadirkanal und einem Stereokanal abgeleitet. Die in Regenbogenfarben kodierte Aufsicht (Bild 3) beruht auf einem digitalen Geländemodell der Region, von dem sich die Topographie der Landschaft ableiten lässt.
Mapserver
Um bereits veröffentlichte Rohbilder und digitale Geländemodelle der Region im GIS-kompatiblen Format herunterzuladen, benutzen Sie bitte diesen Link zu unserem Mapserver.
Bildrechte
Images: ESA/DLR/FU Berlin, CC BY-SA 3.0 IGO
Copyright Notice:
Where expressly stated, images are licenced under the Creative Commons Attribution-ShareAlike 3.0 IGO (CC BY-SA 3.0 IGO) licence. The user is allowed to reproduce, distribute, adapt, translate and publicly perform it, without explicit permission, provided that the content is accompanied by an acknowledgement that the source is credited as 'ESA/DLR/FU Berlin', a direct link to the licence text is provided and that it is clearly indicated if changes were made to the original content. Adaptation/translation/derivatives must be distributed under the same licence terms as this publication.
Die High Resolution Stereo Kamera wurde am Deutschen Zentrum für Luft- und Raumfahrt (DLR) entwickelt und in Kooperation mit industriellen Partnern gebaut (EADS Astrium, Lewicki Microelectronic GmbH und Jena-Optronik GmbH). Das Wissenschaftsteam unter Leitung des Principal Investigators (PI) Prof. Dr. Ralf Jaumann besteht aus 52 Co-Investigatoren, die aus 34 Institutionen und elf Nationen stammen. Die Kamera wird vom DLR-Institut für Planetenforschung in Berlin-Adlershof betrieben.